Baik,,, buat semua yang ingin mengetahui tentang system digital. Dan ini adalah pengetahuan kamu tentang hukum aljabar Boolean.
Hukum – hokum Aljabar Boolean
T1. Hukum Komutatif.
a. A + B = B + A
A | B | A + B | B + A |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
b. A B = B A
A | B | A . B | B . A |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
T2. Hukum Asosiatif
a. ( A + B ) + C = A ( B + C )
A | B | C | ( A + B ) + C | A + ( B + C ) |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 |
b. (A B) C = A (B C)
A | B | C | ( A . B ) C | A ( B . C ) |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 |
T3. Hukum Distributif
a. A (B + C) = A B + A C
A | B | C | A ( B + C ) | A B + A C |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 |
b. A + (B C) = (A + B) (A + C)
A | B | C | A + ( B . C ) | ( A + B ) ( A + C ) |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 |
T4. Hukum Identity
a. A + A = A
A | A + A | A |
0 | 0 | 0 |
1 | 1 | 1 |
b. A . A = A
A | A . A | A |
0 | 0 | 0 |
1 | 1 | 1 |
T5.
a. AB + AB’ = A
A | B | AB + AB’ | A |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
b. ( A + B )( A + B’) = A
A | B | ( A + B )( A + B’ ) | A |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
T6. Hukum Redudansi
a. A + A B = A
A | B | A + AB | A |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
b. A (A + B) = A
A | B | A ( A + B ) | A |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
T7.
a. 0 + A = A
A | 0 + A | A |
0 | 0 | 0 |
1 | 1 | 1 |
b. 0 A = 0
A | 0 . A | 0 |
0 | 0 | 0 |
1 | 0 | 0 |
T8.
a. 1 + A = 1
A | 1 + A | 1 |
0 | 1 | 1 |
1 | 1 | 1 |
b. 1 A = A
A | 1 A | A |
0 | 0 | 0 |
1 | 1 | 1 |
T9.
a. A’ + A = 1
A | A’ + A | 1 |
0 | 1 | 1 |
1 | 1 | 1 |
b. A’A = 0
A | A’A | 0 |
0 | 0 | 0 |
1 | 0 | 0 |
T10.
a. A + A’B = A + B
A | B | A + A’B | A + B |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 |
b. A ( A’ + B ) = AB
A | B | A ( A’ + B ) | AB |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
T11. Theorema De Morgan's
a. (A + B )’ = A’ . B’
A | B | A’ | B’ | (A+B)’ | A’ . B’ |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
b. (AB)’=A’+B
A | B | B’ | B’ | (AB)’ | A’ + B’ |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 |
Quis Aljabar Boolean
1. Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT)
2. Give the best definition of a literal?
- A Boolean variable
- The complement of a Boolean variable
- 1 or 2
- A Boolean variable interpreted literally
- The actual understanding of a Boolean variable
3. Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer.
1. A + B + C
4. Which of the following relationships represents the dual of the Boolean property
x + x'y = x + y?
5. Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is:
6. Which of the following Boolean functions is algebraically complete?
1. F = xy
7. Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results?
8. Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'?
9. An equivalent representation for the Boolean expression A' + 1 is
10. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results?
0 komentar:
Posting Komentar