Hukum - Hukum Aljabar Boolean

Baik,,, buat semua yang ingin mengetahui tentang system digital. Dan ini adalah pengetahuan kamu tentang hukum aljabar Boolean.

Hukum – hokum Aljabar Boolean

T1. Hukum Komutatif.

a. A + B = B + A

A

B

A + B

B + A

0

0

0

0

0

1

1

1

1

0

1

1

1

1

1

1

b. A B = B A

A

B

A . B

B . A

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

T2. Hukum Asosiatif

a. ( A + B ) + C = A ( B + C )

A

B

C

( A + B ) + C

A + ( B + C )

0

0

0

0

0

0

0

1

1

1

0

1

0

1

1

0

1

1

1

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

b. (A B) C = A (B C)

A

B

C

( A . B ) C

A ( B . C )

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

1

1

T3. Hukum Distributif

a. A (B + C) = A B + A C

A

B

C

A ( B + C )

A B + A C

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

b. A + (B C) = (A + B) (A + C)

A

B

C

A + ( B . C )

( A + B ) ( A + C )

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

1

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

T4. Hukum Identity

a. A + A = A

A

A + A

A

0

0

0

1

1

1

b. A . A = A

A

A . A

A

0

0

0

1

1

1

T5.

a. AB + AB’ = A

A

B

AB + AB’

A

0

0

0

0

0

1

0

0

1

0

1

1

1

1

1

1

b. ( A + B )( A + B’) = A

A

B

( A + B )( A + B’ )

A

0

0

0

0

0

1

0

0

1

0

1

1

1

1

1

1

T6. Hukum Redudansi

a. A + A B = A

A

B

A + AB

A

0

0

0

0

0

1

0

0

1

0

1

1

1

1

1

1

b. A (A + B) = A

A

B

A ( A + B )

A

0

0

0

0

0

1

0

0

1

0

1

1

1

1

1

1

T7.

a. 0 + A = A

A

0 + A

A

0

0

0

1

1

1

b. 0 A = 0

A

0 . A

0

0

0

0

1

0

0

T8.

a. 1 + A = 1

A

1 + A

1

0

1

1

1

1

1

b. 1 A = A

A

1 A

A

0

0

0

1

1

1

T9.

a. A’ + A = 1

A

A’ + A

1

0

1

1

1

1

1

b. A’A = 0

A

A’A

0

0

0

0

1

0

0

T10.

a. A + A’B = A + B

A

B

A + A’B

A + B

0

0

0

0

0

1

1

1

1

0

1

1

1

1

1

1

b. A ( A’ + B ) = AB

A

B

A ( A’ + B )

AB

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

T11. Theorema De Morgan's

a. (A + B )’ = A’ . B’

A

B

A’

B’

(A+B)’

A’ . B’

0

0

1

1

1

1

0

1

1

0

0

0

1

0

0

1

0

0

1

1

0

0

0

0

b. (AB)’=A’+B

A

B

B’

B’

(AB)’

A’ + B’

0

0

1

1

1

1

0

1

1

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0

Quis Aljabar Boolean

1. Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT)

  1. A * 1 = 1
  2. A * 0 = 0
  3. A + 0 = 0
  4. A * A = A
  5. A * 1 = 1

2. Give the best definition of a literal?

  1. A Boolean variable
  2. The complement of a Boolean variable
  3. 1 or 2
  4. A Boolean variable interpreted literally
  5. The actual understanding of a Boolean variable

3. Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer.

1. A + B + C

  1. D + E
  2. A'B'C'
  3. D'E'
  4. None of the above

4. Which of the following relationships represents the dual of the Boolean property

x + x'y = x + y?

1. x'(x + y') = x'y'

  1. x(x'y) = xy
  2. x*x' + y = xy
  3. x'(xy') = x'y'
  4. x(x' + y) = xy

5. Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is:

  1. Z + YZ
  2. Z + XYZ
  3. XZ
  4. X + YZ
  5. None of the above

6. Which of the following Boolean functions is algebraically complete?

1. F = xy

  1. F = x + y
  2. F = x'
  3. F = xy + yz
  4. F = x + y'

7. Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results?

  1. A + B
  2. A'B'
  3. C + D + E
  4. C'D'E'
  5. A'B'C'D'E'

8. Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'?

  1. F'= A+B+C+D+E
  2. F'= ABCDE
  3. F'= AB(C+D+E)
  4. F'= AB+C'+D'+E'
  5. F'= (A+B)CDE

9. An equivalent representation for the Boolean expression A' + 1 is

  1. A
  2. A'
  3. 1
  4. 0

10. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results?

  1. ABCDEF
  2. AB
  3. AB + CD + EF
  4. A + B + C + D + E + F
  5. A + B(C+D(E+F))

0 komentar:

Posting Komentar